複素数体上の正方行列𝑨はJordan標準形𝑱と相似である、すなわち或る正則行列𝑷が存在して𝑷 -1 𝑨𝑷=𝑱となることは線型代数講座の最終目標でもあるから、講座を履修したことがある人なら誰でも御存知でしょう。ところが、私の友人共から言わせれば殆どすべての学生達はJordan標準形の証明を少なくとも講義時点で全く理解していないと言ってました。それが証拠に、Jordan標準形の講義終了後に具体的な正方行列のJordan標準形を求めよと言っても、殆どすべての学生達は出来ないでしょう。また日頃から知ったかぶりで線型代数を環上の加群の一理論に過ぎないと軽視して講義をおろそかにしている学生連中が蓋を開けてみれば全く出来なかったことも言ってました。Jordan標準形の証明は① 広義固有空間に基づくもの(冪零空間を扱っているものも同義)、② 有理標準形を経由するもの、③ 単因子標準形を経由するもの、等があります。どれも長くて決して簡単ではありませんが、分かりやすさの度合いでは①が最低最悪です。①が分かりにくい一つの理由として読者に若干の視覚的直観を強いるからだと私は思います。歴史的に言うと①を避けたくて②又は③が考案されたのでしょう。しかし、①を本当の意味で理解すれば、Jordan標準形の本質も理解したことになり、Jordan標準形の算出も簡単に出来るはずなんです。残念ながら②又は③は間接的なので、それらの証明を理解してもJordan標準形の存在証明を理解したに過ぎず、Jordan標準形の本質を理解したことにはなりません。①は多少の違いや書き方の差はあれど、あれ以上は実質的に簡単になりません。私もかって①の基本線に沿って分かりやすい(自己基準)と思った証明を書いたことがありましたが、友人共から言わせれば返って不透明になったとボロクソに言われました。その時以来、①を改良しようなどと考えたことがありません。要は冪零空間を扱っている限りどれも似たり寄ったりということです。従って、皆さんも講義時点では①を理解出来なくても心の中でいつも①を反芻しておれば、いつかは証明と親密になる時が来るはずです。その時がいつ来るのか個人差があり、そもそもそれではその時までJordan標準形をずっと使えないままになるので、Jordan標準形の算出方法(と言うか、大事なのはJordan標準形そのも